a peak at the trailing edge and zero at the leading edge, must be used. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13089, Aug. 13, 1969; 34 FR 17509, Oct. 30, 1969; Amdt. 23–45, 58 FR 42160, Aug. 6, 1993; Amdt. 23–48, 61 FR 5145, Feb. 9, 1996] # § 23.371 Gyroscopic and aerodynamic loads. - (a) Each engine mount and its supporting structure must be designed for the gyroscopic, inertial, and aerodynamic loads that result, with the engine(s) and propeller(s), if applicable, at maximum continuous r.p.m., under either: - (1) The conditions prescribed in §23.351 and §23.423; or - (2) All possible combinations of the following— - (i) A yaw velocity of 2.5 radians per second: - (ii) A pitch velocity of 1.0 radian per second: - (iii) A normal load factor of 2.5; and - (iv) Maximum continuous thrust. - (b) For airplanes approved for aerobatic maneuvers, each engine mount and its supporting structure must meet the requirements of paragraph (a) of this section and be designed to withstand the load factors expected during combined maximum yaw and pitch velocities. - (c) For airplanes certificated in the commuter category, each engine mount and its supporting structure must meet the requirements of paragraph (a) of this section and the gust conditions specified in §23.341 of this part. [Doc. No. 27805, 61 FR 5145, Feb. 9, 1996] ## §23.373 Speed control devices. If speed control devices (such as spoilers and drag flaps) are incorporated for use in enroute conditions— - (a) The airplane must be designed for the symmetrical maneuvers and gusts prescribed in §§ 23.333, 23.337, and 23.341, and the yawing maneuvers and lateral gusts in §§ 23.441 and 23.443, with the device extended at speeds up to the placard device extended speed; and - (b) If the device has automatic operating or load limiting features, the airplane must be designed for the maneuver and gust conditions prescribed in paragraph (a) of this section at the speeds and corresponding device positions that the mechanism allows. [Amdt. 23-7, 34 FR 13089, Aug. 13, 1969] CONTROL SURFACE AND SYSTEM LOADS #### §23.391 Control surface loads. The control surface loads specified in §§ 23.397 through 23.459 are assumed to occur in the conditions described in §§ 23.331 through 23.351. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–48, 61 FR 5145, Feb. 9, 19961 ### §23.393 Loads parallel to hinge line. - (a) Control surfaces and supporting hinge brackets must be designed to withstand inertial loads acting parallel to the hinge line. - (b) In the absence of more rational data, the inertial loads may be assumed to be equal to KW, where— - (1) K=24 for vertical surfaces; - (2) K=12 for horizontal surfaces; and - (3) W=weight of the movable surfaces. [Doc. No. 27805, 61 FR 5145, Feb. 9, 1996] ## §23.395 Control system loads. - (a) Each flight control system and its supporting structure must be designed for loads corresponding to at least 125 percent of the computed hinge moments of the movable control surface in the conditions prescribed in §§23.391 through 23.459. In addition, the following apply: - (1) The system limit loads need not exceed the higher of the loads that can be produced by the pilot and automatic devices operating the controls. However, autopilot forces need not be added to pilot forces. The system must be designed for the maximum effort of the pilot or autopilot, whichever is higher. In addition, if the pilot and the autopilot act in opposition, the part of the system between them may be designed for the maximum effort of the one that imposes the lesser load. Pilot forces used for design need not exceed the maximum forces prescribed §23.397(b). - (2) The design must, in any case, provide a rugged system for service use, considering jamming, ground gusts, taxiing downwind, control inertia, and